

Recommender systems for a more accurate estimate of user's preferences 2

Abstract

Recommender systems, which predict how high a user would rate an item, have been

researched for a long time in the industry and academia due to the advantages they present on

computer-user interaction as a way of filtering data overload to the user. They have also been

used extensively by media and e-commerce services in order to achieve personalization of

these services, catering to many users and increasing sales. Four main types of

recommendation systems are identified currently: content-based memory-based, content-based

model-based, collaborative content-based, and collaborative model-based. Each of them

presenting advantages and disadvantages. But, how do current recommender system types

compare to each when evaluated against each other in controlled environment? This

essay will identify the strengths and weaknesses of each through experimentation and analysis

in order to compare them objectively. A representative algorithm will be chosen for each of

these recommender systems, and then implemented on a controlled environment to be run

against the Netflix dataset. Data will be gathered on algorithm speed and accuracy, for a

varying sample size. The results show that content-based algorithms performed poorly against ~--~,-....,
their counterparts. This gives insight into the type of~ed. It was determined that the

Netflix dataset is fundamentally collaborative, as it has favors these types of algorithms. By ,...__,_,~
analyzing how the results varied with the sample size, the potential benefits of each algorithm

were shown. Content-based systems perform better on environments which provide extra

metadata relating to items. Collaborative systems perform better on systems with a large

number of users, memory-based systems are more accurate than model-based systems with

smaller datasets. These results reinforce how these algorithms are used in the industry, the

data provided by the tests appears to reinforce the way these algorithms are thought of.

Word Count: [291]

.Recommender systems for a more accurate estimate of user's

preferences.

Word Count: [3312]

Recommender systems for a more accurate estimate of user's preferences 3

Table of Contents 1, 1
.... 11

1. Content-based vs Collaborative Filtering ... 5

2. Memory-based vs Model-based Filtering ... 6

3. Algorithm implementations ... 8

3.1 Memory-based collaborative filtering ... 8

3.2 Model-based Collaborative Filtering ... 10

3.3 Content-based model-based Filtering .. 12

3.4 Content-based memory-based Filtering ... 12

4. Results ... 13

5. Conclusion ... 15

~ .,,.., 7.
d,;"" <:._ \ l D \.'"\ ...- '

Recommender systems for a more accurate estimate of user's preferences 4

With the rise of the Internet, information available has increased to a scale never

seen before. The information overload experienced by customers of today's web

services gave rise to the need of personalization or technologies that present customers

with information they deem useful [1][3][5]. Many techniques have been developed in

order to address this multifaceted problem, with recommender systems being one of

these techniques [1].

Recommender systems are expert systems that address the specific problem of

providing item recommendations for users [1]. They date back to the mid-90's, when the

recommendation problem was formally established by independent research [2][10].

Recommender systems have found a big use in the industry due to the advantages they

present on predicting user behavior patterns [2][4]. Many businesses require such

insight into their users in order to provide a better service. Recommender systems have

been an active area of research due to the growing number of media and e-commerce

services on the web [4]. The ability of being able to predict what a user may like or not

may determine the difference between maximizing sales for an e-commerce site or

missing potential customers [6]. The search for the best algorithm to provide

recommendations is an ongoing one because only through the use of clever algorithms

will we achieve true personalization in human-computer interaction [3]. The objective of

this paper is to provide a complete and extensive analysis of the current available

techniques for constructing recommender systems, and to expose the advantages,

disadvantages, and extent of each through experimentation.

As the aforementioned recommendation problem is a very general one and includes

many different areas, different approaches have been used to create recommender

systems, depending on the context and requirements of the industry that implemented

these systems [6]. Techniques derived from machine learning and approximation theory

have long been utilized to build such systems [1], where the machine learning methods

have been proven to be the most successful in the majority of areas due to their

scalability [4]. These different techniques have evolved over time and differ on the way

they approach the problem. According to [11] these approaches can be categorized into

the following two broad categories: content-based filtering (also known as individual

Recommender systems for a more accurate estimate of user's preferences

filtering) and collaborative filtering. A hybrid category is also proposed for those

recommender systems which use techniques from both aforementioned categories.

~~~~~·-~~~~ ~if 

1. Content-based vs Collaborative Filtering 

Recommender systems aim to predict the utility a user would find from an item 

[2], This utility is often presented in the form of a rating which can be given explicitly by 

the user or implicitly through his behavior [2]. Recommender systems work on the 

assumption that there exists a correlation between user preferences and ratings given 

to items. 

5 

The first approach to constructing recommender systems is collaborative filtering. 

Collaborative filtering algorithms predict users' preferences through the use of data 

collected from other users on the system. They work on the assumption that a user c 

will rate an item s in a similar way that a similar user c' would. They effectively are able 

to predict the preferences of any user based on the preferences of other users deemed 

similar [3][4]. Formally, collaborative filtering tries to predict the utility u(c,s) for user c 

and items by approaching it by u(c',s) [2]. k ~~ .,::J,.,v +i;...~J 9 i;l1,v,w ~, .. t.1 
O...f1L .C'1'M-- 1 \.o..r= ~ j 

On the other hand, content-based filtering does not rely on other users to provide 

recommendations, but instead aims to provide them by comparing items previously 

rated by the user [2][4][5]. It relies on the assumption that user c will rate items in a 

similar way as was done with a similar item s' It is the opposite to collaborative filtering 

in that it tries tries to predict the utility u(c,s) for user c and item s by approaching it with 

u(c,s1 [2][8]. (JO() 

Content-based algorithms perform best on contexts where there is an abundance 

in data pertaining to items [3]. An example of a service where content-based filtering 

could be useful could be a news article aggregator that personalizes content for the 

user. This is because items can be easily described by tags or keywords from the 

article. For many applications pure content-based filtering can prove insufficient, 

because a person is likely to have many interests and preferences that may not show 

through the items they have rated.[3] 



Recommender systems for a more accurate estimate of user's preferences 

There is a problem, however, with the two methods mentioned above known as 

the cold-start problem [3]. This problem emerges when there is no data in the 

recommender system and thus it's not able to make recommendations. Since these 

systems are dependent on past experiences, they will not be able to provide 

recommendations if there is no data present. 

This is why, to solve the cold-start problem, many businesses opt to provide 

6 

simple recommendations based on best sellers, or most viewed. Which are examples of 

additive recommendations [1]. The data feed top the recommender system will \ 

determine the outcome of its predictions on the users, so choosing carefully this will 

provide a better context for their users. 

2. Memory-based vs Model-based Filtering 

Aside from these two categories, further two categories have been proposed by 

[9] that describe the implementation of recommender systems. These categories 

describe the way ratings are computed instead of focusing kind of data used to compute 

ratings. These are memory-based (also known as heuristic-based) and model-based. 

Memory-based algorithms were among the first used to predict user preferences 

[4]. They analyze present data and manipulate it in a meaningful way to obtain a result. 

Because of this, memory-based algorithms depend directly on the data stored in a 

database [9]. 

An example of a memory-based algorithms could be the K-Nearest Neighbor 

algorithm which predicts a user's preferences by combing the preferences other users 

graded by their closeness to the user in question [4]. Memory-based techniques use 

available system memory to store data needed to provide recommendations. This can 

lead to manageability problems, as database sizes tend to become very large [9]. 

Services with a database that is neither sparse nor fragmented may benefit from such b"'{)l~ 
recommender systems. r-.: . ;;;;::::.. 

Memory-based algorithms are considered comparatively easier to implement, so 

they have been used extensively for many different applications [4]. But with a growing 



Recommender systems for a more accurate estimate of user's preferences 

demand for accurate and fast recommendations, other methods that improve the speed 

of recommendations were looked into. 

The other type of algorithms used to predict users' preferences are model-based 

algorithms [11]. These algorithms use techniques from machine learning and data 

mining to operate [3][6]. They do not depend directly on present data to calculate 

ratings, and because of this tend to be faster. Model-based algorithms differ from 

memory-based techniques in that they require previous training from the database to 

generate a model. This model can then be applied to any user and item and predict the 

rating given [3]. 

7 

Model-based algorithms have been proven to be much less vulnerable to 

i-malicious data insertion and spam due to their nature [12]. Model-based algorithms take 

the~ and are able to overlook noise. This is one of the primary *' reasons these algorithms are among ~pular in recommender systems [12]. 

This way, the system cannot be tricked into giving false recommendations to a user ( I) 

based on how other users manipulated the recommendations into fitting their objective / .( 

[12]. ·-

Examples of model-based algorithms are data clustering algorithms, Bayesian 

network algorithms [2], and recently singular value decomposition algorithms [13]. 

Model-based algorithms aim to establish relationships between items and users with 

data taken from their behavior, but doesn't depend on the stored data [4]. The data is 

only used in order to generate a model that predicts accurately user behavior patterns. 

Model-based techniques uncover the underlying patterns of user behavior, but this 

information is not useful outside the context specified by the algorithm [3]. 

There exist hybrid systems which combine memory-based and model-based 

techniques [11]. They create an interesting possibility because they take elements from 

both techniques in order to better handle data [14]. These hybrid systems are often the 

most used one because of their advantages, and are used when a specific set of 

algorithms doesn't fit an application's goal [3]. 

~~ ~~'-"~d_.;::·fQ A.a -·4o't> c\...o~ <l\r cLc:>~i- o~ 

~ r <':J2.. V'\.r\.. o_-r e..T-'\ 



Recommender systems for a more accurate estimate of user's preferences 8 

3. Algorithm implementations 

Excluding the hybrid systems, four types of recommender systems can be 

identified: memory-based collaborative, model-based collaborative, memory-based 

content-based, and model-based content-based. With these different types of 

recommender systems, the following question arises: "How do current recommender 

system types compare to each when evaluated against each other in controlled 

environment?" In order to get such insight, tests were performed with each algorithm in 

a controlled environment to compare them in a quantitative way and to analyze their 

implications. 
,• 

,,- , In 2011 Nett/ix created a recommender system contest known as the Netflix 
,/ ,,,, 
~c:)t consisted of making a recommender system capable of accurately predicting 

ratings present on their site. To test their algorithms, contestants trained their 

recommender systems with an anonymous dataset provided by Netflix and compared 

the predictions with a set of answers also given in the dataset. The ratings provided in 

this dataset are of 17770 movies and were made by 480189 users. Further information 

concerning the dataset is given in the Appendix. 

To provide real results, the Netflix dataset was used. Concerning the algorithms, 

the standard implementation for each recommender system was evaluated, having 

speed and accuracy as the main criteria. An average rating recommendation, along with 

a random recommendation were also tested to serve as a control for the experiment. 

Algorithm accuracy was measured by applying the RMSE criteria to the resulting 

predictions. ~ 

3.1 Memory-based collaborative filtering 

Memory-based collaborative filtering was used for the first test. The most common 

implementation for this type of recommender systems is done by defining the utility 

function for user c and item s as an aggregate function of the ratings rc·,s for every 

similar user c' inside users C [2]. 

u(c, s) = aggrrc,,s 
crEC 

l') 

( 



Recommender systems for a more accurate estimate of user's preferences 

The aggregate function used for this method was a simple weighted, as shown 

below, where k is a normalizer,fc,is the average rating given by a user c', and sim is a 

function that determines the similarity between two users. This method is known as the 

KNN algorithm or K-Nearest Neighbor algorithm as the value for the prediction is based 

on the nearest neighbors weighted by their closeness or, in this case, similarity [2]. 

u(c, s) = rc + k I sim cc, c')(rc,.s - r~,) 
c,ec 

9 

The similarity function is most commonly implemented by computing the Pearson 

correlation coefficient [2][3]. This coefficient is computed by the following formula, where 

Sxyis the set of items rated by both user x and user y. 

Lsesx)rx,s - rx) (ry,s - 1y) 
sim(x, y) = --;:============ 

Lsesx)rx,s - rxf Lsesx)ry,s - r;..)
2 

} ~!~~s~~rity between n-dimensional vectors can be also used to obtain 

O t, the similarity as pointed out in [2], but it should be noted that the Pearson correlation 

( coefficient is equivalent to the cosine similarity if the mean ratings were taken as the 

,1 origin for each vector. Implementing this formula in python results with the following: 

145 def similarity(self ,a,b): 
146 if not hashf (a, b) in self. similarities: 
147 top= a 
148 keylSquared = 0 
149 key2Squared = 0 
159 for value in self.ratings.get pairs(a): 
151 if value in self.ratings.get pairs(b): 
152 top += (self. ratings. get-value (a, value) . mean (a) ) 

* (self .ratings.get value(b,value)-self.mean(b)) 
153 keylSquared += (self. ratings .get value (a, value) -

.mean(a))**2 -
154 key2Squared += (self.ratings.get_value(b,value)-

.mean(b))**2 
155 if keylSquared!=G and key2Squared!=0: 
156 self.similarities[hashf(a,b)J = top I math.sqrt 

(keylSquared * key2Squared) 
157 else: 
158 self.similarities[hashf(a,b)J = 0 
159 return self.similarities[hashf(a,b)JI 

The resulting algorithm is known as the Pearson Nearest Neighbor algorithm [13]. 

This implementation has an order of O(m x n) per recommendation where mis the 



Recommender systems for a more accurate estimate of user's preferences 

amount of ratings for user c and n is the amount of ratings in C. This can prove to be 

very expensive as the value of n is around 10 million. A solution for this problem is to 

reduce the size of C used in the utility function. This was done by taking a randomly 

distributed sample of 100 or less users from C instead. This sample size would be 

changed in order to obtain different results from the RMSE. In order to reduce 

discrepancies in the data due to the random factor, 5 runs of the program were 

performed per measure and the average was taken as the result. 

The following is the resulting implementation of the utility function: 

97 def utilit y. laborative h( 
98 normalizer = 9, ·-· 

f , user, it em) : 

99 total = a 

users= self.ratings.get pairs(item) 
if users! -

if (users) >100: 
similarUsers = random.sample(users, 100) 

else: 
similarUsers = users 

for similarUser in similarUsers: 
if simi larUser ! = user: 

10 

100 
101 
192 
103 
104 
105 
106 
107 
108 
189 total+= (self.ratings.get value(similarUser,item) -

.mean(simil~rUser)) * .similarity(user, similarUser) 
110 
111 return total * normalizer + self .mean(user) 

3.2 Model-based Collaborative Filtering 

For the model-based collaborative approach, we start by having an error E defined 

as the error between the real ratings rand the ratings predicted by u. The problem is 

then an optimization one with the goal of minimizing Eforthe predictions given by u [7]. 

The error E can thus be expressed as some kind of aggregate of errors. 

(_ The SVD algorithm is one, of the most commonly used algorithms for recommender 
...__ _____________ ··--~----,--·'" . .,_.,.,.,,/ 

systems, this is due to both its accuracy and speed [7][13][16]. This algorithm works by 

defining feature vectors for each user and item. Feature vectors refer to the features an 

item might have. A movie might, for example, have a feature vector consisting of action, 

drama and comedy components expressed as follows <amount_of_action, 

amount_of_comedy,drama>. An action movie that has a little comedy and is not 



Recommender systems for a more accurate estimate of user's preferences 

dramatic may have a feature vector of <4,-1, 1 >. Similarly, a user ~o likes action and 

drama would have a feature vector of <4,3,0>. 1;/ 
By combing these vectors in the utility function, one would get the rating a user 

would give to an item. One way to do this is by simply obtaining the dot product of the 

feature vectors [13]. The utility function would then be defined the following way where 

Fe represents the features of user c and Fs represents the features of item s: 

u(c,s) =Fe· Fs 

In code, the utility function was implemented the following way: 

95 def 
96 
97 
98 
99 

collaborative ( ,user,item): 

sum+= 
return sum 

( .num features): 
f.features[userJ[iJ*self.features[itemJ[iJ 

11 

The order of the utility function for this algorithm is thus 0(1) because the amount of 

features per vector is a constant. 

As can already be guessed, the performance of this algorithm would be dependent 

on the performance of its training. One of the most common approaches to reducing 

time taken by SVD while keeping accuracy high is called incremental SVD [13][15]. This 

algorithm defines the error function for a user c as the sum of the errors of items rated 

by that user: 

Ee= L (rc,s - u(c,s) r + 11Fsll 2 + 11Fcll2 

sESc 

The problem then becomes one of finding the feature vectors, instead of predicting 

ratings. To obtain these feature vectors, SVD algorithms factorize the ratings. If the 

ratings are viewed as a matrix, this becomes a matrix factorization problem [7][13]. As 

can be seen in the error function above, one is able to obtain the feature vectors c and 

s, by performing optimization on the function. The reason the squared error was chosen 

as the error function is that minimizing the squared error function is equivalent to 

minimizing the RMSE (the metric used to evaluate the accuracy). 



Recommender systems for a more accurate estimate of user's preferences 

This error function was implemented as follows: 

193 def rror(self,user,items): 
104 squaredError = a 
195 for item in items: 
106 squaredError += ( .utility collaborative m 

(user,item) - self.ratings.get_value(user7item))**2 + sum 
( f.item features[item]) + sum(self.user features[user]) 

107 return squaredError -
""''"" . .,~.,, ---- ... ---_,,.,_.,; ,,_,, 

The training for the algorithm had an order pf O(m3), ,but due to the nature of the 
\ ,/' ' 

algorithm, there was no need for the training to be-eofnplete, viz. partial training would 

still yield accurate predictions. Instead, some time was given to the algorithm to 'learn' 

the features of these vectors. The more time given to the algorithm, the more accurate 

the predictions and the less RMSE. 

3.3 Content-based model-based Filtering 

12 

Content-based filtering techniques have mostly been used for recommendations 

pertaining to services with an abundance of item information. This item information was 

not present in the dataset tested, but could be obtained from external sources. Despite 

this, no external sources for data were used. This was with the hope of keeping results 

comparable. 

Content-based model-based filtering can be implemented through the use of the 

same SVD algorithm as the collaborative model-based implementation, replacing the 

error function with a content-based analog, Note that the error is now for all users Cs 

that have rated item s. 

Es = L (rc,s - u(c,s) )2 + 11Fsll2 + IIFcll 2 

cEC5 

The python implementation was kept polymorphic in order for it to be used for ~h 

techniques. The function would only have to be called differently. / 

3.4 Content-based memory-based Filtering 

Finally a content-based memory-based algorithm was tested. This recommender 

system was implemented the same as the memory-based collaborative algorithm but 



Recommender systems for a more accurate estimate of user's preferences 

using the similarity between two items for the weighted sum instead of the similarity 

between two users. 

LcECxy(rc,x -rx) (rc,y -ry) 
sim(x,y) = --;===::::::::::::======== 

JLcEcx/rc,x -fx)
2 

LcEcx/rc,y - ry)2 

13 

The similarity between items uses the same implementation shown above for the 

similarity, which was also made polymorphic in order to be used for items and users 

alike. Again a sample of 100 was used when appropriate in order to reduce time taken. 

The utility function was thus the same PNN algorithm, but was modified to focuss 

on items instead of users: 

u(c, s) =rs+ k I sim cs. s')(rc,s, - rs,) 
s1ES 

The python implementation is shown below. 

91 def util ity content 
92 normaliier = 0. 

,user,item): 

93 total = 9 
94 if self.ratings.get pairs(item} != 
95 similarltems = ielf.ratings.get_pairs(user) 
96 
97 
98 
99 

if similarltems! : 
if (similarltems) > 

similarltems = random.sample(similarltems, 
for similarltem in similarltems: 

if similarltem != item: 
100 
101 
102 total+= (self.ratings.get value(similarltem,user) 

.mean(similarltem)) * self.similarity(item, similarltem) 
103 return total* normalizer+ self.mean(item) 

4. Results 
I' 

The results obtained by running the algorithms against the test probe provided in l 
the Netflix dataset are shown below. The control algorithms are also provided. The ·. 

following table shows the Order of each algorithm as well as the least RMSE measured.~') 

Minimum error Order per Training 

(RMSE) recommendation Order 



Recommender systems for a more accurate estimate of user's preferences 14 

Random 1.732051 0(1) -

recommendations 

Average rating of 1.000000 0(1) -

user 

Average rating of 1.225819 0(1) -

item 

Memory-based 1.094864 O(m x n) -
Collaborative 

Filtering 

Model-based 0.915002 0(1) O(m3) 

Collaborative 

Filtering 

Memory-Based 1.192138 O(m x n) -

Content-based 

1
Filtering 

Model-Based 0.974348 0(1) O(m3) 

Content based-

filtering 

In order to demonstrate the behavior of the RMSE in the memory-based algorithms 

implemented the sample size was increased. The following chart illustrates the behavior 

of the RMSE when groups were formed before applying the operation. The top part of 

the data refers to content-based algorithm, while the bottom part refers to collaborative 

predictions. 



Recommender systems for a more accurate estimate of user's preferences 

r----------·---· 

Illustration 
1.4 

l 

0.8 

RMSE 
0.6 

0.4 

0 
0 200 400 600 

Sample Size 

1: Graph 1: RMSE vs. Sample Size 

collaborative 

800 1000 12( 

On average, content-based predictions were 31 % less accurate than their 

counterparts. 

15 

Memory-based filtering accuracy seems to perform better when more data is 

available to the algorithm. This is because the bigger the sample size, the more similar 

users available to the algorithm. These algorithms, although proved to be accurate, also 

proved to not scale. The time taken for a complete run with 100 as the sample size was, 

in both cases, around 2600s. The time taken is proportional to the number of samples 

chosen. With a sample size of 1000, the time taken was around 26,000s. 

Further tests were conducted to determine the behavior of the RMSE in the model­

based algorithms. The training time was used as the independent variable. The results 

are as shown in the following chart: 



Recommender systems for a more accurate estimate of user's preferences 16 

2: RMSE vs Time 
l 

0.98 

0.96 

0.94 

0.92 

0.9 

0.88 

0.86 
0 500 1000 1500 2000 

Time (s) 

Again, the content-based technique was the less accurate one. On average, the 

content-based algorithm was 4.3% less accurate than the collaborative algorithm in this 

case. 

Even though content-based filtering performed worse than collaborative filtering, its 

performance is surprising. These algorithms thrive in situations where the content 

features are provided explicitly to them. But due to the nature of the dataset used, these 

features had to be measured indirectly. Even in an environment where this data was not 

present, their performance was not far behind from their collaborative counterparts. 

Following these results it is clear why memory-based filtering use is reduced for 

larger databases. These algorithms are able to provide an accurate prediction, but at a 

high time cost. As services continue to increase in size, these algorithms will not able to 

keep up. Memory-based algorithms are more suited to smaller databases where they 

are able to predict with accuracy user preferences. 



Recommender systems for a more accurate estimate of user's preferences 17 

5. Conclusion 

With the need of a fast, yet accurate recommender system, the best algorithm is 

one that manages to find balance between these qualities, which seem to oppose each 

other. The results obtained through the tests performed give a clear answer as to why 

the best algorithms are the model-based algorithms. But it must be noted that the 

environment at which this algorithms were able to perform well was a specific one that 

may not fit every need. As the nature of the Netflix dataset was a collaborative one, 

collaborative-algorithms were able to outperform the others. 

Having this limitation in mind, it is important to weight the benefits of each algorithm 

for a given context: Based on the results, content-based algorithms are the ones that 

should be used for databases that have additional metadata concerning their items, as 

they have a more accurate similarity function on which to operate. Collaborative 

algorithms should be used when the nature of the database permits a high number of 

ratings from multiple users as the similarity function will also be more accurate, model­

based algorithms should be used for large databases where recommendation speed is 

required and accuracy is a major concern, and finally memory-based algorithms should 

be best employed on smaller datasets with a high degree of similar users. 

Further improvements on recommender systems which incorporate the knowledge 

of the nature of these techniques to create hybrid systems should be looked into. 

Identifying the right areas on where to use these tools is the first step on this direction. 

That is achieving true personalization for a better utilization of the information available 

to the users. 

J 



Sc ~ r <:_~ --+c:::i ~ 

of '\-~. <2-s_s ~ j 

+~v.. ~ ~l '--4--o ~t~y ~ 
clol ~ k ~ €'. ecr{f f°'* 

C<.- '-._, 0\ ~ { ·~ ~.. -t-""Q.~1(- \.'\/\ S 

b~~ 0-0\..Q_~~,,·~ -~~ pl 0-0~e ~ , 

°" cJ0ct ~~ 
~ ~~+-t-



Recommender systems for a more accurate estimate of user's preferences 18 

References 

1. Resnick, P., & Varian, H. R. (1997). Recommender Systems. Communications Of The ACM, 
40(3), 56-58. doi:10.1145/245108.245121 

2. Tuzhilin, Alexander, and Gediminas Adomavicius. "Towards the Next Generation of 
Recommender Systems."IEEE Transactions on Knowledge and Data Engineering 17 (2005): 
734. Print. 

3. Anand, Sarabjot Singh, and Bamshad Mobasher. "Intelligent techniques for web 
personalization." Proceedings of the 2003 international conference on Intelligent Techniques for 
Web Personalization. Springer-Verlag, 2003. 

4. "Recommender Systems lntroduction."Stanford Info/ab. N.p., n.d. Web. 6 Mar. 2014. 
<http://infolab.stanford.edu/-ullman/mmds/ch9> 

5. Resnick, P., & Varian, H. R. (1997). Recommender Systems. Communications Of The ACM, 
40(3), 56-58. doi:10.1145/245108.245121 

6. Ricci, F., Rokach, L., & Shapira, B. (2011 ). Introduction to recommender systems handbook 
(pp. 1-35). Springer US. 

7. Ma, C. C. (2008). Large-scale collaborative filtering algorithms. Master's thesis, National 
Taiwan University. 

8. Van Meteren, R., & Van Someren, M. (2000, May). Using content-based filtering for 
recommendation. In Proceedings of the Machine Learning in the New Information Age: 
MLnet/ECML2000 Workshop. 

9. Breese, John S., David Heckerman, and Carl Kadie. "Empirical analysis of predictive 
algorithms for collaborative filtering." Proceedings of the Fourteenth conference on Uncertainty 
in artificial intelligence. Morgan Kaufmann Publishers Inc., 1998. 

10. Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. (1992). Using collaborative filtering to 
weave an information tapestry. Communications of the ACM, 35(12), 61-70. 

11.M. Balabanovic and Y. Shoham, "Fab: Content-Based, Collaborative Recommendation," 
Comm. ACM, vol. 40, no. 3, pp. 66-72, 1997. 

12. Mehta, Bhaskar, Thomas Hofmann, and Wolfgang Nejdl. "Robust collaborative 
filtering." Proceedings of the 2007 ACM conference on Recommender systems. ACM, 2007 

13. Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2000). Application of dimensionality 
reduction in recommender system-a case study (No. TR-00-043). Minnesota Univ Minneapolis 
Dept of Computer Science. 

14. Kleinberg, J., & Sandler, M. (2004, June). Using mixture models for collaborative filtering. In 
Proceedings of the thirty-sixth annual ACM symposium on Theory of computing (pp. 569-578). 
ACM. 



Recommender systems for a more accurate estimate of user's preferences 

15. Su, X., & Khoshgoftaar, T. M. (2009). A survey of collaborative filtering techniques. 
Advances in artificial intelligence, 2009, 4. 

16. Pryor, M. H. (1998). The effects of singular value decomposition on collaborative filtering. 

19 



Recommender systems for a more accurate estimate of user's preferences 20 

Appendix I 

Netflix Price README file 

SUMMARY 
------------------------------------------------------------------------------------------------------------------------------------------------

This dataset was constructed to support participants in the Netflix Prize. See 
http://www.netflixprize.com for details about the prize. 

The movie rating files contain over 100 million ratings from 480 thousand 
randomly-chosen, anonymous Netflix customers over 17 thousand movie titles. The 
data were collected between October, 1998 and December, 2005 and reflect the 
distribution of all ratings received during this period. The ratings are on a 
scale from 1 to 5 (integral) stars. To protect customer privacy, each customer 
id has been replaced with a randomly-assigned id. The date of each rating and 
the title and year of release for each movie id are also provided. 

USAGE LICENSE 
------------------------------------------------------------------------------------------------------------------------------------------------
----------------

Netflix can not guarantee the correctness of the data, its suitability for any 
particular purpose, or the validity of results based on the use of the data set. 
The data set may be used for any research purposes under the following 
conditions: 

* The user may not state or imply any endorsement from Netflix. 

* The user must acknowledge the use of the data set in 
publications resulting from the use of the data set. 

* The user may not redistribute the data without separate 
permission. 

* The user may not use this information for any commercial or 
revenue-bearing purposes without first obtaining permission 
from Netflix. 

If you have any further questions or comments, please contact the Prize 
administrator <prizemaster@netflix.com> 

TRAINING DATASET FILE DESCRIPTION 
------------------------------------------------------------------------------------------------------------------------------------------------
----------------

The file "training_set.tar" is a tar of a directory containing 17770 files, one 
per movie. The first line of each file contains the movie id followed by a 
colon. Each subsequent line in the file corresponds to a rating from a customer 
and its date in the following format: 

C us tome rl D, Rating, Date 

- MovielDs range from 1 to 17770 sequentially. 



Recommender systems for a more accurate estimate of user's preferences 21 

- CustomerlDs range from 1 to 2649429, with gaps. There are 480189 users. 
- Ratings are on a five star (integral) scale from 1 to 5. 
- Dates have the format YYYY-MM-DD. 

MOVIES FILE DESCRIPTION 
------------------------------------------------------------------------------------------------------------------------------------------------
----------------

Movie information in "movie_titles.txt" is in the following format: 

Movie ID, YearOfRelease, Title 

- MovielD do not correspond to actual Netflix movie ids or IMDB movie ids. 
- YearOfRelease can range from 1890 to 2005 and may correspond to the release of 

corresponding DVD, not necessarily its theaterical release. 
- Title is the Netflix movie title and may not correspond to 

titles used on other sites. Titles are in English. 

QUALIFYING AND PREDICTION DATASET FILE DESCRIPTION 
------------------------------------------------------------------------------------------------------------------------------------------------
----------------

The qualifying dataset for the Netflix Prize is contained in the text file 
"qualifying.txt". It consists of lines indicating a movie id, followed by a 
colon, and then customer ids and rating dates, one per line for that movie id. 
The movie and customer ids are contained in the training set. Of course the 
ratings are withheld. There are no empty lines in the file. 

MovielD1: 
CustomerlD11,Date11 
CustomerlD12,Date12 

MovielD2: 
Customer! 021 , Date21 
Customer! 022, Date22 

For the Netflix Prize, your program must predict the all ratings the customers 
gave the movies in the qualifying dataset based on the information in the 
training dataset. 

The format of your submitted prediction file follows the movie and customer id, 
date order of the qualifying dataset. However, your predicted rating takes the 
place of the corresponding customer id (and date), one per line. 

For example, if the qualifying dataset looked like: 

111: 
3245,2005-12-19 
5666,2005-12-23 
6789,2005-03-14 
225: 
1234,2005-05-26 
3456,2005-11-07 

then a prediction file should look something like: 



Recommender systems for a more accurate estimate of user's preferences 

111: 
3.0 
3.4 
4.0 
225: 
1.0 
2.0 

which predicts that customer 3245 would have rated movie 111 3.0 stars on the 
19th of Decemeber, 2005, that customer 5666 would have rated it slightly higher 
at 3.4 stars on the 23rd of Decemeber, 2005, etc. 

You must make predictions for all customers for all movies in the qualifying 
dataset. 

THE PROBE DATASET FILE DESCRIPTION 

22 

------------------------------------------------------------------------------------------------------------------------------------------------
----------------

To allow you to test your system before you submit a prediction set based on the 
qualifying dataset, we have provided a probe dataset in the file "probe.txt". 
This text file contains lines indicating a movie id, followed by a colon, and 
then customer ids, one per line for that movie id. 

MovielD1: 
Customer! 011 
CustomerlD12 

MovielD2: 
Customer! 021 
Customer! 022 

Like the qualifying dataset, the movie and customer id pairs are contained in 
the training set. However, unlike the qualifying dataset, the ratings (and 
dates) for each pair are contained in the training dataset. 

If you wish, you may calculate the RMSE of your predictions against those 
ratings and compare your RMSE against the Cinematch RMSE on the same data. See 
http://www.netflixprize.com/faq#probe for that value. 

Good luck! 

MD5 SIGNATURES AND FILE SIZES 
------------------------------------------------------------------------------------------------------------------------------------------------
----------------

d2b86d3d9ba8b491d62a85c9cf6aea39 
ed843ae92adbc70db64edbf825024514 
88be8340ad7b3c31dfd7b6f87e7b9022 
Oe13d39f97b93e2534104afc3408c68c 
0098ee8997ffda361a59bc0dd1bdad8b 

577547 movie titles.txt 
10782692 probe.txt 

52452386 qualifying.txt 
567 rmse.pl 

2081556480 training_set.tar 



Recommender systems for a more accurate estimate of user's preferences 

import math 
import random 

def User(a): 
return int(a)*2 

def ltem(a): 
return int(a)*2+1 

Appendix II 

Memory-based filtering implementation 

#Simple hashing function where the order of inputs doesn't matter 
def hashf(a,b): 

return a*b 

#Helper class to store ratings 
class DoubleKeyDict(object): 

def _init_(self): 
self._key1_dict = {} 
self._key2_dict = {} 
self._values = {} 

#Establish relation between user a and item b of rating c 
def set(self,a,b,c): 

if not a in self._key1_dict: 
self._key1_dict[a] = [] 

self._key1_dict[a].append(b) 
if not b in self._key2_dict: 

self._key2_dict[b] = [] 
self._key2_dict[b].append(a) 

#Add rating 'c' to user 'a' and item 'b' inside diet 'ratings' 
self._values[hashf(a,b)] = c 

def get_value(self,a,b): 
return self._ values[hashf( a, b )] 

#Return items rated by user a or users that rated item a 
def get_pairs(self, a): 

if a in self._key1_dict: 
return self._key1_dict[a] 

elif a in self._key2_dict: 
return self._key2_dict[a] 

else: 
print("ERROR: Key not found") 

#Return user list 
def get_first_keys(self): 

return self._key1_dict 

#Return item list 
def get_second_keys(self): 

return self._key2_dict 

#Main class 

23 



Recommender systems for a more accurate estimate of user's preferences 

class Group(object): 
def _init_(self): 

self.ratings= DoubleKeyDict() 
self. leader = O 
self.means = {} 
self.similarities = {} 

#Add rating for user and item to self.ratings 
def add(self,user, item, rating): 

self.ratings.set(user,item,rating) 

def utility_random(self, user, item): 
return random.randint(1,5) 

def utility_mean_user(self, user, item): 
return self.mean(user) 

def utility_mean_item(self, user, item): 
return self.mean(item) 

def utility_collaborative_h(self,user,item): 
normalizer= 0.0035 
total= O 

similarUsers = self.ratings.get_pairs(item) 
if similarUsers!=None: 

if len(similarUsers) >100: 
similarUsers = random.sample(similarUsers, 100) 

for similarUser in similarUsers: 
if similarUser != user: 

total+= (self.ratings.get_value(similarUser,item) - self.mean(similarUser)) * 
self.similarity(user, similarUser) 

return total *normalizer+ self.mean(user) 

def utility_content_h(self,user,item): 
normalizer= 0.0035 
total= O 
if self.ratings.get_pairs(item) != None: 

similarltems = self. ratings.get_pairs(user) 

if similarltems!=None: 
if len(similarltems) > 100: 

similarltems = random.sample(similarltems, 100) 
for similarltem in similarltems: 

if similarltem != item: 
total+= (self.ratings.get_value(similarltem,user) - self.mean(similarltem)) * 

self.similarity(item, similarltem) 
return total *normalizer+ self.mean(item) 

def similarity(self,a,b): 
if not hashf(a,b) in self.similarities: 

top= O 
key1 Squared = O 

24 



Recommender systems for a more accurate estimate of user's preferences 

key2Squared = 0 
for value in self.ratings.get_pairs(a): 

if value in self.ratings.get_pairs(b): 
top+= (self.ratings.get_value(a,value)-self.mean(a)) * 

(self.ratings.get_value(b,value)-self.mean(b)) 
key1Squared += (self.ratings.get_value(a,value)-self.mean(a))**2 
key2Squared += (self.ratings.get_ value(b, value )-self. mean(b) )**2 

if key1 Squared!=O and key2Squared!=O: 
self.similarities[hashf(a,b)] = top I math.sqrt(key1 Squared* key2Squared) 

else: 
self.similarities[hashf(a,b)] = 0 

return self.similarities[hashf(a,b)] 

def mean(self, a): 
if not a in self.means: 

total= 0 
count= 0 
if self.ratings.get_pairs(a) != None: 

for pair in self.ratings.get_pairs(a): 
total += self.ratings.get_value(a, pair) 
count+= 1 

self. means[ a]=total/count 
else: 

#print "ERROR: No ratings present for given data" 
self. means[ a]=2.5 

return self.means[a] 

main = Group() 

def load(d): 
filenames= os.listdir(d) 
total= float(len(filenames)) 
current= 0 
for filename in filenames: 

f = open(d+filename) 
movield = f.readline()[:-2] 
if os.path.isfile('status'): 

print "Loading ... [%i%%]" %(currenUtotal*100) 
for line in f: 

(user, rating, date)= line.split(",") 
main.add(User(user), ltem(movield),int(rating)) 

current+= 1 
f.close() 
if current>10000 or os.path.isfile('continue'): 

break 

def results(d): 
f = open(d) 
results= open("results.txt", "w") 
current= 1 
total= float(sum(1 for line inf)) 
movield = 0 
f.seek(4) 
rMSE = 0 
squaredError = 0 
batch_output = "'' 

25 



Recommender systems for a more accurate estimate of user's preferences 

total valued = 1 
for line in f: 

print "Predicting user ratings ... [%f%%] with error of:%f' %((current/total*100),rMSE) 

if line[-2:-1] == ":": 
movield = int(line[:-21) 
batch_output += line+"" 

else: 
result= main.utility_content_h(User(line), ltem(movield)) 

try: 
squaredError += (result-main.ratings.get_value(User(line), ltem(movield)))**2 
rMSE = math.sqrt(squaredError/total_valued) 
total_valued += 1 

except: 
pass 

batch_output += "%f\n" %result 

if current % 1000 == 0: 
results. write(batch_ output) 
batch_output = "" 

current+=1 
print "Predicting user ratings ... [%f%%] with error of:%f' %((current/total*100),rMSE) 
f.close() 

load("NF _Oataset/training_set/") 
results("NF _Dataset/probe. txt") 

26 



Recommender systems for a more accurate estimate of user's preferences 

#Incremental SVD algorithm 

import math 
import random 

def User(a): 
return int(a)*2 

def ltem(a): 
return int(a)*2+1 

Appendix Ill 

Model-based filtering implementation 

#Simple hashing function where the order of inputs doesn't matter 
def hashf(a,b): 

return a*b 

#Helper class to store ratings 
class DoubleKeyDict( object): 

def _init_(self): 
self._key1_dict = {} 
self._key2_dict = {} 
self._values = {} 

#Establish relation between user a and item b of rating c 
def set(self,a,b,c): 

if not a in self._key1_dict: 
self._key1_dict[a] = [) 

self._key1 _ dict[ a].append(b) 
if not b in self._key2_dict: 

self._key2_dict[b] = [) 
self._key2_dict[b].append(a) 

#Add rating 'c' to user 'a' and item 'b' inside diet 'ratings' 
self._values[hashf(a,b)] = c 

def get_value(self,a,b): 
return self._values[hashf(a,b)] 

#Return items rated by user a or users that rated item a 
def get_pairs(self, a): 

if a in self._key1_dict: 
return self._key1_dict[a] 

elif a in self._key2_dict: 
return self._key2_dict[a] 

else: 
print("ERROR: Key not found") 
return[] 

#Return user list 
def get_first_keys(self): 

return self._key1_dict 
#Return item list 
def get_second_keys(self): 

return self._key2_dict 

27 



Recommender systems for a more accurate estimate of user's preferences 

#Minimizing function. 
def minimize(errorfunc, parameters, feature, array): 

rate= 0.002 
right= errorfunc(*parameters) 
array[feature] -= rate 
left = errorfunc(*parameters) 
slope = (right-left)/rate 

if slope>O: 
while (slope>0.0005): 

right= left 
array[feature] -= slope*rate 
left= errorfunc(*parameters) 
slope = (right-left)/slope 

elif slope<O: 
array[feature] += rate 
while (slope<-0.0005): 

left= right 
array[feature] -= slope*rate 
right = errorfunc(*parameters) 
slope = (left-right)/slope 

#Main class 
class Group(object): 

def _init_(self): 
self.ratings= DoubleKeyDict() 
self. user _features = {} 
self. item_features = {} 
self. num features = 7 
self.pred1ctions = {} 

#Add rating for user and item to self.ratings 
def add(self,user, item, rating): 

self.ratings.set(user,item,rating) 

#Assign a 7 dimension feature vector to each user and item. 
#0.598 is a nice default and was calculated by sqrt(meanScore/numberOfFeatures). 
#No check was done as it is faster this way and doesn't affect the end result 
self.user_features[user] = [0.598 for x in range(self.num_features)] 
self.item_features[item] = [0.598 for x in range(self.num_features)] 

#Simple dot product of the feature vectors 
def utility_model(self,user,item): 

sum= 0 
for i in range(self.num_features): 

sum += self. user _features[user][i]*self. item_features[item][i] 
return sum 

#Squared Error function 
def squaredError(self,user,items): 

squaredError = 0 
for item in items: 

squaredError += (self.utility_collaborative_m(user,item) -
self.ratings.get_value(user,item))**2 + sum(self.item_features[item]) + 
sum( self. user _features[user]) 

return squaredError 

28 



Recommender systems for a more accurate estimate of user's preferences 

main = Group() 

#Load database 
def load(d): 

filenames = os.listdir(d) 
total= float(len(filenames)) 
current= 0 
for filename in filenames: 

f = open(d+filename) 
movield = f.readline()[:-2] 
if os. path. isfile('status'): 

print "Loading ... [%i%%]" %(current/total*100) 
for line in f: 

(user, rating, date)= line.split(",") 
main.add(User(user), ltem(movield),int(rating)) 

current+= 1 
f.close() 
if current>10000 or os.path.isfile('continue'): 

break 

#Load data to be predicted 
def load_predictions(d): 

f = open(d) 
current= 1 
total = float(sum(1 for line inf)) 
movield = 0 
f.seek(O) 
for line in f: 

if os. path. isfile('continue2'): 
print "Determining values to predict [%i%%]" %(current/total*100) 
break 

if line[-2:-1] == ":": 
movield = int(line[:-2]) 

else: 
main.predictions[User(line)]=ltem(movield) 

current+= 1 
f.close() 

#Calculate the feature vectors for every user and item 
def calculate_features(): 

total= float(len(main.user_features)) 
current= 0 

for user in main.user features: 
print "Calculating features ... [%f%%]" %(current/total*100) 
if user in main.predictions: 

items= main.ratings.get_pairs(user) 
for i in range(len(main.user_features[user])): 

minimize(main.squaredError, (user.items), i, main.user_features[user]) 
for item in items: 

for i in range(len(main.item_features[item])): 
minimize(main.squaredError, (user.items), i, main.item_features[item]) 

current+=1 

print "Loading ratings ... " 
load("NF _Dataset/training_setf') 

29 



Recommender systems for a more accurate estimate of user's preferences 

print "Loading predictions ... " 
load_predictions("NF _Dataset/probe.txt") 
print "Calculating Features ... " 
calculate_features(); 

squaredError = 0 
total= float(len(main.predictions)) 
current= 0 
print total 
for user,item in main.predictions.items(): 

print "Loading ... [%i%%] rmse of %f' 
%(current/total*100,math.sqrt(squaredError/len(main.predictions))) 

if item in main.ratings.get_pairs(user): 
try: 

squaredError += (main.ratings.get_value(user,item) -
main.utility_collaborative_m(user,item))**2 

except: 
pass 

current+=1 
print "Loading ... [%i%%] rmse of %f' 
%(current/total*100,math.sqrt(squaredError/len(main.predictions))) 
print math.sqrt(squaredError/len(main.predictions)) 

30 




